It's a Mersenne prime (2ᵖ-1), which are easier to find. see my posts on Mersenne primes and how they are discovered in this dhaga.
( High-school students can understand the basics --and I have encouraged GIMPS to get students excited about mathematics. Students can run the free software are get interested in mathematical research)
It took nearly 6 years for the GIMPS software to find it after the previous largest known prime. It was also the first Mersenne prime found using GPUs.
--- Added later
Here is my post about 6 years about last such prime was discovered... after that exponents of 82589933 adnd recently 136279841. was discovered.
Reproducing that post:
After that post, we have 51 and now 52nd such number!Amber G. wrote: ↑06 Jan 2018 05:34 In this dhaga I have talked about Mersenne prime numbers dozens of times. Now we have 50th known Mersenne prime and 50th perfect number!
New Mersenne prime M77232917 found! 2^77232917-1 is the largest known prime number!
https://www.mersenne.org/primes/press/M77232917.htmlRALEIGH, NC., January 3, 2018 -- The Great Internet Mersenne Prime Search (GIMPS) has discovered the largest known prime number, 277,232,917-1, having 23,249,425 digits. A computer volunteered by Jonathan Pace made the find on December 26, 2017. Jonathan is one of thousands of volunteers using free GIMPS software available at www.mersenne.org/download/.
The new prime number, also known as M77232917, is calculated by multiplying together 77,232,917 twos, and then subtracting one. It is nearly one million digits larger than the previous record prime number, in a special class of extremely rare prime numbers known as Mersenne primes. It is only the 50th known Mersenne prime ever discovered, each increasingly difficult to find. Mersenne primes were named for the French monk Marin Mersenne, who studied these numbers more than 350 years ago. GIMPS, founded in 1996, has discovered the last 16 Mersenne primes. Volunteers download a free program to search for these primes, with a cash award offered to anyone lucky enough to find a new prime. Prof. Chris Caldwell maintains an authoritative web site on the largest known primes, and has an excellent history of Mersenne primes.
<snip ,, see the original post if interested>
For More Information on Mersenne Primes
Prime numbers have long fascinated both amateur and professional mathematicians. An integer greater than one is called a prime number if its only divisors are one and itself. The first prime numbers are 2, 3, 5, 7, 11, etc. For example, the number 10 is not prime because it is divisible by 2 and 5. A Mersenne prime is a prime number of the form 2P-1. The first Mersenne primes are 3, 7, 31, and 127 corresponding to P = 2, 3, 5, and 7 respectively. There are now 50 known Mersenne primes. { 2024 - now there are 52 known}
Mersenne primes have been central to number theory since they were first discussed by Euclid about 350 BC. The man whose name they now bear, the French monk Marin Mersenne (1588-1648), made a famous conjecture on which values of P would yield a prime. It took 300 years and several important discoveries in mathematics to settle his conjecture.
At present there are few practical uses for this new large prime, prompting some to ask "why search for these large primes"? Those same doubts existed a few decades ago until important cryptography algorithms were developed based on prime numbers. For seven more good reasons to search for large prime numbers, see here.
Previous GIMPS Mersenne prime discoveries were made by members in various countries.
In January 2016, Curtis Cooper et al. discovered the 49th known Mersenne prime in the U.S.
In January 2013, Curtis Cooper et al. discovered the 48th known Mersenne prime in the U.S.
In April 2009, Odd Magnar Strindmo et al. discovered the 47th known Mersenne prime in Norway.
In September 2008, Hans-Michael Elvenich et al. discovered the 46th known Mersenne prime in Germany.
In August 2008, Edson Smith et al. discovered the 45th known Mersenne prime in the U.S.
In September 2006, Curtis Cooper and Steven Boone et al. discovered the 44th known Mersenne prime in the U.S.
In December 2005, Curtis Cooper and Steven Boone et al. discovered the 43rd known Mersenne prime in the U.S.
In February 2005, Dr. Martin Nowak et al. discovered the 42nd known Mersenne prime in Germany.
In May 2004, Josh Findley et al. discovered the 41st known Mersenne prime in the U.S.
In November 2003, Michael Shafer et al. discovered the 40th known Mersenne prime in the U.S.
In November 2001, Michael Cameron et al. discovered the 39th Mersenne prime in Canada.
In June 1999, Nayan Hajratwala et al. discovered the 38th Mersenne prime in the U.S.
In January 1998, Roland Clarkson et al. discovered the 37th Mersenne prime in the U.S.
In August 1997, Gordon Spence et al. discovered the 36th Mersenne prime in the U.K.
In November 1996, Joel Armengaud et al. discovered the 35th Mersenne prime in France.
Euclid proved that every Mersenne prime generates a perfect number. A perfect number is one whose proper divisors add up to the number itself. The smallest perfect number is 6 = 1 + 2 + 3 and the second perfect number is 28 = 1 + 2 + 4 + 7 + 14. Euler (1707-1783) proved that all even perfect numbers come from Mersenne primes. The newly discovered perfect number is 277,232,916 x (277,232,917-1). This number is over 46 million digits long! It is still unknown if any odd perfect numbers exist.
There is a unique history to the arithmetic algorithms underlying the GIMPS project. The programs that found the recent big Mersenne primes are based on a special algorithm. In the early 1990's, the late Richard Crandall, Apple Distinguished Scientist, discovered ways to double the speed of what are called convolutions -- essentially big multiplication operations. The method is applicable not only to prime searching but other aspects of computation. During that work he also patented the Fast Elliptic Encryption system, now owned by Apple Computer, which uses Mersenne primes to quickly encrypt and decrypt messages. George Woltman implemented Crandall's algorithm in assembly language, thereby producing a prime-search program of unprecedented efficiency, and that work led to the successful GIMPS project.
School teachers from elementary through high-school grades have used GIMPS to get their students excited about mathematics. Students who run the free software are contributing to mathematical research. David Stanfill's and Ernst Mayer's verification computations for this discovery was donated by Squirrels LLC (http://www.airsquirrels.com) which services K-12 education and other customers.
Note that each such prime also means new 'prefect number' !