Strange.We have perhaps the best mobile battery system with the land fried version of BMos.In the FGFA td. I've posted western analysts views on how the IN could dominate the Malacca Straits and the neighbouring SE Asian states by deploying BMos batteries on the A&N islands.The range of the missile is supposed to be 300km,within the MTCR regime,but as I posted,nations like SoKo a long time ago violated the regime by using smaller warheads and extra fuel for greater range.Plus,the kinetic energy of the supersonic BMos missile adds enormously to the kill effect,at least 2-3 times that of a subsonic missile with similar warhead (300KG+).
The IN is one of the luckiest navies in the world which has a bewilderign assortment of anti-shipo/LACMs in the form of BMos & Klub-both in all 3 variants,Uran,legacy late model Styx,Exocet-to be used on IN Scorpenes,Harpoons for the P-8s,Sea Eagle-being pensioned off on the maritime strike Jaguars/Sea Kings (to be replaced with Harpoon),and finally Nirbhay under development which willl give us a LACM of Tomahawk class.Here is an OZ syudy of Russian anti-ship missiles which we have ins ervice.
http://www.ausairpower.net/Analysis-Regional-ASCM.html
The Tu-142M Bear F
The baseline Bear F long range maritime patrol aircraft was originally armed only with depth charges, sonobuoys and homing torpedoes. The aircraft has considerable growth potential as a carrier of anti-shipping or land attack cruise missiles, a role performed by its sibling Bear G and H models during the Cold War. The SRPE MKU-5-6 rotary launcher for the Bear H and Kh-55SM cruise missile can be readily adapted to the Bear F, and its size easily permits the carriage of the 3M-54E, 3M-54E1 and Kh-35. The weight of the 3M-54E may limit the load to 4 or 5 rounds. The common wing root pylon used on the Bear G and H is rated for the 7 tonne Kh-22 missile, and could accommodate single rounds or pairs of the 3M-54E, 3M-54E1, Kh-35, Kh-41 and possibly the Kh-22 or KSR-5. A best case loadout of the supersonic 3M-54E could be as large as ten rounds.
Another issue of some concern is that once the basic version of such a missile is deployed operationally, the incremental cost of deploying more advanced versions is very modest indeed. Moreover, land attack versions using satellite navigation are becoming available and could also be fielded with little additional effort. The Russians have developed optical scene matching guidance hardware similar to that used on the US Tomahawk cruise missile( Refer Solunin V., Gursky B., `OPTRONIC MISSILE GUIDANCE SYSTEMS:ACCURACY, LOW SIGNATURE AND SIMPLICITY', Military Parade, Jan-Feb, 1999. The system described resembles in principle the US Scene Matching Area Correlator used on the land attack Tomahawk). Therefore submarine launched cruise missiles similar to the US Tomahawk, based on the 3M-54E1, are now technically feasible and would be compatible with the launch systems being fielded by India.
The Bear F has the operating radius, unrefuelled, to penetrate well into Western Australian and Northern Territory airspace from its home base at INS Rajali. The Tu-22M3 has the operating radius to cover an arc between Learmonth and Darwin if sortied from INS Port Blair, and it can use any runway capable of taking an extended range 767 airliner. Should China acquire the Backfire, it can provide almost identical coverage operating from the former Flanker base on Hainan Dao.
Defending Against Supersonic ASCMs
The difficulty presented to a defending warship by the latest Russian ASCMs cannot be understated. While Australia's naval lobbyists will argue that the Evolved Sea Sparrow Missile (ESSM), supported by Nulka and radar absorbent mats will defeat these weapons, or that the damage produced by a Harpoon or Tomahawk sized warhead cannot be fatal to a modern warship, or that the supersonic speed of the ASCMs prvents them from properly acquiring their targets, the reality is a little more complex than they would have us believe. Indeed, the effort being poured by the naval lobby into promoting the purchase of Aegis warships and CTOL/STOBAR carriers would suggest a measure of doublethink which is a little difficult to grasp !
A defending warship can be attacked at ranges between 80-160 NMI which places the launch platform well below the horizon, and outside the range of virtually all SAMs and the Harpoon ASCM. The Moskit, Yakhont and Alfa are all designed for a sea skimming regime of attack, the first two flying a high altitude midcourse phase, with the Alfa flying a subsonic sea skimming midcourse phase.
The first warning a warship will get is when these missiles emerge from behind the radar horizon at about 20-25 NMI, depending on factors such as the height of this ship's radar and ESM antennas, the cruise height of the ASCM and the sea state. Whether it is an ESM alarm or a radar track, warning time between detection and intended impact is between 50 and 60 seconds for the Moskit or Yakhont, and 37 to 46 seconds for the supersonic Alfa. In this time frame the warship must either shoot down or decoy the missile.
The first line of defence are SAMs, such as the ESSM or Standard. For these missiles the radar must acquire and track the inbound ASCM, upon which a SAM is launched and under datalink control steered toward the ASCM. Once close enough, an engagement radar such as the SPG-60/61/62 must illuminate the ASCM for several seconds for the semi-active radar homing SAM to guide itself to impact. If we make the assumption, favourable to the warship, that the SAM can almost instantaneously accelerate to around Mach 3, and it is launched within 3 seconds of ASCM detection, the ASCM will hopefully be destroyed at a distance somewhere around 10 to 12 NMI from the ship.
What happens if there are two ASCMs fired in a salvo ? Then the warship has to first paint one ASCM for several seconds to impact, and then quickly slew the illuminator antenna to the second ASCM to kill it. The launch of the second SAM must be delayed by the time it takes to illuminate for the first SAM since otherwise the second SAM will miss without guidance. If we assume 5 seconds of illumination to kill the first SAM and 2 seconds to slew the antenna, the second ASCM is killed at a distance around 2.8 to 3.8 NMI closer to the ship.
Let's now assume an increasing salvo size of ASCMs. With 3 ASCMs, the distance for the last missile kill is 5.6 to 7.6 NMI closer, or around 3.5 to 5 NMI from the warship. This is of course getting problematic, since SAMs have a minimum engagement range inside of which they do not have the energy to manoeuvre effectively to kill a supersonic target. That range is figure which is seldom publicised, but usually falls inside 2 to 5 NMI. So the fourth ASCM cannot be stopped by a SAM since the illuminator is saturated with ASCMs.
At this point it is strictly a contest between the decoys, onboard jammers, radar absorbers, Phalanx CIWS if fitted, and the quality of the seeker design and its signal processing smarts. A dumb seeker is likely to be decoyed, a smart one less likely. A CIWS gun is usually effective out to around 1-2 NMI and may bag the fourth SCM. If it doesn't then the ship is in dire trouble.
Of course, if 5 or 6 ASCMs are salvoed, odds are the ship will be hit.
Is there anything else the ship can do ? If it has two illuminators on either beam it can turn into the ASCMs to bring a second illuminator to bear. Then it becomes an issue of how many ASCMs can be salvoed at the ship. Odds are that eight supersonic ASCMs will take out even a warship with a very modern AAW package, simply by saturating the fire control system. Even an Aegis cruiser with four SPG-62 engagement radars/illuminators can at best bring three radars/illuminators to bear against a single sector.
What we have described is not a vital and critical secret, the publication of which will irreparably compromise the ADF. It is nothing less than absolutely standard Cold War era Soviet anti-shipping strike doctrine ! Shoot off enough supersonic ASCMs and one or more will get through the saturated air defences of a warship and either kill it, or wound it well enough for a follow-on coup dgrace' shot. The Soviet investment in more than 120 Kh-22M Kitchen firing Backfires was no accident.
How difficult is it to deliver a saturation missile attack ? A Sovremenyy can shoot 8 SS-N-22 Sunburns, a Charlie SSGN 8 SS-N-7 Starbrights, and even a Kilo SSK can push up to six SS-N-27 Alfas out of its torpedo tubes, if it is not equipped with a vertical launch tube package.
If you are using Bears, then depending on the configuration of the aircraft you could shoot up to 10 Alfas. A Backfire could deliver between 4 and 8 Alfas on external hardpoints, depending wholly on the launcher design used. If you are using the Su-27 or Su-30 as a delivery platform, then 2 to 4 Alfas, or 2 Yakhonts could be carried per aircraft. This means that a maritime strike package of 2 to 6 Su-30s could deliver a saturation strike against most modern warships. If the ship is better defended, more fighters can be sortied. Even if the SAMs bag every ASCM, then an attacking air force merely needs to keep throwing ASCMs until the SAM magazines on the defending warships are exhausted. Warships cruising at 20-30 KT cannot outrun aircraft which fly at 400-500 KTAS, once contact is made aircraft can keep revisiting the target until they achieve the desired effect.
Even expending twenty 1 million dollar ASCMs is an excellent return on a warship kill.